一位数除两位数教学反思
作为一位优秀的老师,教学是重要的任务之一,写教学反思可以快速提升我们的教学能力,教学反思要怎么写呢?以下是小编帮大家整理的一位数除两位数教学反思,欢迎阅读与收藏。
一位数除两位数教学反思1上完这节课,让学生判断出发算式商是几位数,在例题中,学生根据观察被除数312的第一位数比除数4小,应该用被除数的前两位数除以4,很容易判断出312÷4的商是几位数,通过提问“7为什么写在商的十位上”,学生在交流中体会到“除数是一位数的除法,当被除数的最高位不够商1时,就要用它的前两位去除,除到被除数的哪一位,就把商写在哪一位的上面”进一步巩固算理。本节课中,通过例题于复习题进行比较,这样在比较中学生比较容易理解商是三位数还是两位数的除法,关键是商的定位,此外,课堂中要重视估算,培养估算意识。
学生在巩固练习,家庭作业的完成过程中,大多数学生左右为情况完成比较好,竖式格式较为规范,个别学生在写横式时漏写余数,或者是漏写横式答案。让学生进行估算得数是几位数,或者是让学生估算得数是几十多,几百多,可以提高学生的估算能力和正确率,练习中还出现了一些乘法的习题,培养学生的注意品质,让学生在计算时养成良好的学习习惯,如计算时把数字看清楚,竖式的数位对齐,养成计算完要验算的好习惯,培养计算时要细心,耐心,用心的好习惯。
一位数除两位数教学反思2笔算除法是本册教材的重点教学内容之一。它是在学生掌握了用乘法口诀求商的方法,学会了除法算式的写法,并且学习了口算除法的基础上进行教学的。这部分内容是学习除数是两位数、除数是多位数除法的重要基础。这一课时的内容是一位数除两位数,商两位数或者三位数的笔算。力求通过自主探索、合作交流,使学生经历一位数除两位数的笔算过程,了解除的顺序、求商的方法和商的书写位置,初步掌握笔算除法的方法。
我从学生的生活经验和已有知识出发,精心创设情境,引导学生开展尝试、操作、交流、实践……,在多种数学活动中学习除法笔算方法,具有以下特点:
1.确立学生的主体地位,让学生在自主探索中获得对笔算过程和算理的理解。
先以解决“三年级平均每班种多少棵?”为例,请学生运用已有的知识、技能,探索42÷2怎样算。在学生独立探索后,交流自己的方法。有的学生通过分小棒,知道结果;交流活动展示了学生探索的成果,也显示出学生对笔算方法的不了解。因此,我提出:“今天我们重点研究笔算除法”明确学习内容。通过课件再现分小棒的过程,并以师生对话教师板书的方式,共同经历笔算的过程,帮助学生了解笔算除法的顺序、求商的方法和商的书写位置。
接着,请学生解决“四年级平均每班种多少棵?”的问题,进一步探索笔算除法。在这里,先让学生用竖式计算52÷2,并告诉学生:“可以先用小棒分一分,再写竖式”。我们看到,有的学生动手分小棒,有的学生直接写竖式,每个学生都在认真探索。1分钟过去了,我请写完的同学和同桌说一说,是怎样算的;2分钟过去了,请学生向全班展示,师生分享着成功的喜悦。展示后,课件动态显示分小棒和笔算52÷2的过程,并在黑板上再现除法竖式,理顺思路,提升了学生对除法笔算过程和算理的理解。然后,老师特意请学生回忆比较42÷2与52÷2的笔算过程“有什么不同?”通过比较,突出52÷2的第二个计算过程,即被除数十位上余下的数与个位上的数合并,再继续除,使学生进一步认识除法的笔算方法。
2.精心安排实践应用活动,促进学生主动学习。
探索除法笔算方法后,组织帮小动物检查对错的活动。全班学生仔细地检查小猴、小鸭、小花猫和小山羊所写的竖式,争先表达自己的检查结果。在学生检查纠错的基础上,我提出:“你想提醒大家在笔算除法时应注意些什么呢?”此时,学生根据自己的体会,很认真的把自己的想法告诉大家;我们听到了不同的意见:‘不要忘记写余数”“数位要对齐,特别是商和被除数的数位要对齐”“要看清楚被除数,在第一次商后,十位上还有没有余数。如果没看清,忘记了把题算错”“横式不要忘了写上得数”……。这些来自学生的提醒,真实、亲切。帮小动物检查对错的活动,既帮助学生加深对除法笔算过程的理解,又使学生获得积极健康的情感体验。通过这些活动,原本枯燥的计算充满了活力,学生学的主动而有兴趣。
一位数除两位数教学反思3除数是一位数的除法是本册教材重点也是难点教学内容之一,这部分内容是学生学习除数是两位数、除数是多位数除法的重要基础。本节课是笔算这一内容的起始课,是在学生已经掌握了用乘法口诀求商的方法、学会了除法算式的写法及学习了口算除法的基础上进行教学的。本节课的教学重点是探索一位数除两位数的笔算方法,掌握竖式的书写方法和格式;难点是理解一位数除两位数的笔算除法的算理。
我从学生的生活经验和已有知识出发,精心创设情境,引导学生开展尝试、操作、交流、实践. 基于学生是数学学习的主人这一教学观念,我从学生的认知发展水平和已有的知识经验出发,组织探究笔算方法的活动。
先以解决三年级平均每班种多少棵?为例,请学生运用已有的知识、技能,探索422怎样算。在学生独立探索后,交流自己的方法。有的学生通过分小棒,知道结果;有的学生口算出422=21;还有的学生在运用口算方法的同时,写出竖式表示计算结果。交流活动展示了学生探索的成果,也显示出学生对笔算方法的不了解。因此,我提出:今天我们重点研究笔算除法明确学习内容。通过课件再现分小棒的过程,并以师生对话教师板书的方式,共同经历笔算的过程,帮助学生了解笔算除法的顺序、求商的方法和商的书写位置。
接着,请学生解决四年级平均每班种多少棵?的问题,进一步探索笔算除法。在这里,先让学生用竖式计算522,并告诉学生:可以先用小棒分一分,再写竖式。我们看到,有的学生动手分小棒,有的学生直接写竖式,每个学生都在认真探索。1分钟过去了,我请写完的同学和同桌说一说,是怎样算的;2分钟过去了,请学生向全班展示,师生分享着成功的喜悦。展示后,课件动态显示分小棒和笔算522的过程,并在黑板上再现除法竖式,理顺思路,提升了学生对除法笔算过程和算理的理解。然后,老师特意请学生回忆比较422与522的笔算过程有什么不同?通过比较,突出522的第二个计算过程,即被除数十位上余下的数与个位上 整节课,从植树节、植树活动开始,到布置学校的设计活动,围绕着学生的学习展开了一系列活动。学生经历了探索,运用除法笔算方法的全过程,主动构建知识。学生学的快乐、主动,达到了预期的教学目的。的数合并,再继续除,使学生进一步认识除法的笔算方法。
一位数除两位数教学反思4在本次教学中,主要是突出学生的自主活动。我始终认为计算中的任何法则都必须让学生通过实践的证明,来得出结论,才能使他们刻骨铭心,使他们终身难忘。
学生已有的经验有:多位数除以一位数的 ……此处隐藏4343个字……程中探讨出新知。因为动手操作是一种主动学习活动,它具有具体形象,易于促进兴趣,便于建立表象,有利于理解知识等特点。所以,通过组织学生动手操作学习新知识,正是适应这一认知特点,学生只有在一些实际操作中才能逐步体会、理解“形”和“数”之间的联系,从而使学生在动手操作的愉快氛围中获取知识。
二、让学生在观察思考中理解算理
在教学一位数除三位数(首位能整除)的笔算方法时,我主要是让学生自己观察竖式并结合操作思考以下问题:(1)从哪一位开始算起(2)2为什么写在商的十位?(3)竖式中的第二个4、6分别表示什么等问题,通过观察、思考,运用已有知识(有余数除法的笔算方法)的迁移摆小棒的过程,很容易理解第二个4、6分别是怎么得来的,表示什么。
缺点:一、学生对于竖式的计算没有达到预期的效果。
我认为学生以前接触过除法竖式,掌握起来应该不难,但是学生实际做起来并不理想。做起来丢三拉四,不是很好。
三、新旧知识点的对比不明显
本次教学是以有余数除法笔算方法为基础的,但两个知识点之间又存在着很大的不同:以前学的有余数的除法是直接应用表内除法计算的,商都是一位数,而现在所学的两位数除以一位数(首位能整除)的除法则商是两位数,不能直接应用表内除法进行计算,而要从十位开始算起。由于没有让学生进行新旧知识的对比,导致很多学生在笔算两位数除以一位数(首位能整除)的除法时,和以前的知识产生混淆。
总之,由于学生已有认知基础和思维方式的不同。教学中要充分利用时间和空间,注重学生的动手操作,了解学生不同的操作方法,并在课堂上有效地引导,逐步让学生在比较明晰较合理的操作方法上理解算理,从而提高计算技能。
一位数除两位数教学反思13上学期教学两位数除以一位数时,结合着可操作的实物情境(羽毛球),算理讲得很充分很透彻,学生也的确做到了“知其然也知其所以然”,唯一可惜的是并未脱离情境从计数单位的角度来引导学生理解算理。
本学期第一课三位数除以一位数(商是三位数)的教学却让我犯了难:竖式计算的算理教还是不教?怎么教?从教材和教学用书看,似乎以迁移两位数除以一位数的算法为主,并不需要算理的支撑(仅解决商的最高位问题),但如此一来,又如何跟学生解释“除完百位只把十位移下来除而不要连个位一起移”之类的问题?学生在尝试计算和巩固练习中可都出现了这样的问题。
看来还是要讲一讲道理的,可道理又该如何讲?再借助实物情境是不可能了,没有这样的情景可用。那就只能从计数单位的角度来讲了,可这样高度抽象的算理在具体教学时是一带而过,还是花大力气细讲?又有多少学生能接受,又有多少学生能记住?这里是个大大的问号。
思之再三,课上还是没敢“讲道理”。通过估算,学生确定了商的最高位。然后就放手让他们自己利用旧有经验试着写完竖式,巡视中我果然发现了不少学生出现了十位个位一起移下来除的情况。交流时先让正确的学生详细介绍了计算过程,随后我举出了发现的这一问题,问:一起移下来后方便继续除下去吗?在正、反例的对比下,学生知道了:要一位一位往下除。但他们的所谓知道也仅是知道表面上的原因而已,个中的真正原因是不清楚的。接着就与复习中的两位数除以一位数竖式进行求同比较,粗略的概括了这么几条:从最高位除起;一位一位除;有余数要和后一位合起来再除;除到个位才能结束。
总体来看,浮于表面的迁移、简单的模仿、机械的演练————这就是孩子们今天所经历的。虽然由于知识本身的难度不大,加之旧知较扎实,他们还是较快且较熟练的掌握了三位数除以一位数的方法。但,他们的收获也仅限于技能层面了。缺乏了理解,学生们还能将今天的笔算方法内化到他们的认知结构中去吗?新旧知识之间缺失了内在的有机联系,学生们还能建构起关于笔算除法的雏形系统吗?
一位数除两位数教学反思14教学背景:
“一位数除两位数”的笔算除法,要求学生理解和掌握运算顺序与商的定位方法及笔算竖式书写格式。很多教师在第一次教学这一内容时,都认为非常简单,实际上学生很难理解:为什么要从高位除起?除后十位上余下的数为什么要和个位上的数合在一起?因为教师觉得这一内容简单,导致第一次执教这一课时很少有教师成功解决这些难点。我第一次执教失败后,第二次执教这一课时,采取操作、探究、小组合作的教学形式,取得了较好效果。
教学实录:
创设情境,尝试体验。
教师出示10支一捆的笔,共9捆,另有6支散装笔。
师:老师现在有96支笔,要平均分给3人,每人可得几支?可以怎样分?
小组操作讨论后,学生提出各种解决问题的方案。
生1:一支一支分,每人可得32支。
生2:两支两支分比一支一支分方便,每人得32支。
生3:先一捆一捆分,每人分得3捆,然后再把剩下的6支笔平均分成3份,每人得2支,所以每人一共得32支笔。
……
学生纷纷议论着,认为这种分法最简单,很快就能将笔分完。
师:那么,你能否用这种最简单的方法列竖式计算呢?会的同学可以自己列式,不会的可以离开座位请教别人。(有十几个学生离开位置,请教别人)
学生尝试,教师巡视指导,然后集体交流。
师:哪一种才是最简便、正确的计算方法?为什么?
学生一致得出是第二种方法。
生4:我先把9捆笔平均分成3份,即9÷3=3(捆),然后再分另外的6支,实际上是分两次,因此书写上有两层。
师:真聪明!
师(指着竖式):十位上的“9”先除以3,商3,3为什么写在十位上?个位上的“6”除以3,商2为什么写在个位上?
师:古代的人真聪明,发明了列竖式计算除法,你们能理解吗?
生5:我知道为什么要这样列竖式,因为竖式中的除号是工厂的“厂”字。具体意思表示......
师:你真会动脑筋!
师:那么,如果现在老师想把96支笔平均分给2个人,应该怎样分呢?每人自己动手,找出最简单分成两份的方法,然后自己列竖式计算。不会的同学可以离开位置和别人讨论。
师:哪个是正确的?哪个是错误的?为什么?
(生答略)
师:竖式中9-8=1是什么意思?为什么剩下的1捆要和零散的6支合在一起?竖式计算的书写格式是否正确?……
反思:
数学因操作而生动,因现实而丰富。
操作本质上是学生的再创造过程。在这一过程中,学生不仅自主学到了相关的知识,掌握了一些方法,更重要的是学生在操作的过程中获得了一种深刻的体验。
为了给学生提供一次实际操作的机会,教师设计了“将96支笔平均分成3份”这一教学情境,使学生懂得除法竖式的运算顺序与生活是有联系的,它从高位起有序地进行是为了计算的方便。学生会因为数学的现实、有趣而喜欢上数学,从而产生学习的兴趣。因此,作为数学教师就要尽可能从学生的生活挖掘和寻求可以利用的教学资源,让他们感到数学是现实的、有用的,从而使数学教学更加丰富、鲜活。
文档为doc格式